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The parameters of the specific-risk-of-fracture function of Weibull were determined for
glass cylinders subjected to flexure. The total probability of fracture was used considering
the maximum stress of fracture, and considering also the location of fracture. Weibull’s
parameter m obtained by means of both procedures is in keeping with theory and it
amounts to m = 7.5. In addition, the dispersion of Weibull’s parameters was studied using
the inversion of Fisher’s information matrix, whose values showed a correct execution of
testing. Moreover, the distribution of fracture time during testing was investigated, and
neither fracture stresses nor location thereof exhibited whatever influence attributable to
this time. C© 2002 Kluwer Academic Publishers

1. Introduction
The 3-point bending test of rectangular beams is ex-
hibiting diverse sources of error in the determination of
the maximum stress of fracture and hence in the deter-
mination of Weibull’s parameters of the specific-risk-
function [1]. One of these sources of error is constituted
by the aleatory boundary conditions [2, 3]. For instance,
the case of some rectangular beam requires parallelism
among three straight lines, namely two lines of support
and one line of loading, and in addition the contact be-
tween these lines and the material must be continuous.
These boundary conditions modify the mean stresses of
fracture when the properties of the material are deter-
ministic, and if said properties are aleatory then fracture
probability undergoes a modification. Reference [4, 5]
study the change in Weibull’s parameter m for terracotta
bars subjected to traction and to flexotraction, making a
fitting by means of Legendre’s orthogonal polynomials,
which did not answer parameter modification, and then
considering that traction testing was excentrical and
meant therefore a new condition of aleatory boundary.
Now, in view of the foregoing, it is indeed very impor-
tant to undertake testing in a manner that annuls aleatory
boundary conditions. This is precisely what character-
izes a bending test using round beams due to the absence
of such conditions inasmuch as the beam has only three

contact points with the testing device. The only thing
that is to be corrected in this instance is the effect due to
a punctual loading, that is to say the Seewald-Karman
correction of deterministic nature. The effect of the
Seewald-Karman correction has been treated already
considering rectangular beam [6] and round beams [7]
and, in the present case, this effect is of second order.

The evaluation of Weibull’s parameters has been car-
ried out already using sundry methods, for example
least squares, maximum likelihood, and chi-squared
[8], and such methods can be called analytical. Graphi-
cal methods have been also employed, and such nomo-
graphical procedures have been developed by León and
Kittl [9] for the bending of rectangular beam, by Kittl
et al. [10] for the bending of round beams, and by Dı́az
and Morales [11] for torsion. The estimation of param-
eters dispersion was made using Fisher’s information
matrix for diverse states of stress [6, 7, 12, 13]. The same
method was employed by Trustrum [14] to estimate
Weibull’s parameter m considering local probability.

The present work aims at estimating Weibull’s pa-
rameters in the bending of round beams of glass using
the local and total probabilities of fracture, and esti-
mating moreover the respective dispersions by means
of Fisher’s matrix, and estimating finally the distribu-
tion of fracture times.
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2. Experimental procedure
90 test specimens of commercial glass 0.05 m long
and 0.002 m radius were prepared and subjected to the
3-point bending test. The maximum stress of fracture σ

along with fracture positions measured along the lon-
gitudinal axis of the beam as the least distance to one
of the supporting points of the beam, were determined.

The commercial glass used here had the following
composition: 74.32% SiO2, 17.56% Na2O, 1.38% K2O,
0.11% MgO, 3.67% CaO, 2.35% Al2O3 and 0.14%
Fe2O3.

The experimental results of both determinations sup-
plied the maximum stress of fracture and the least dis-
tance between fracture and one of beam supporting
points, which were ordered independently following
an ascending order. This ordering allows to determine
the probabilities considering the experimental data and
using as estimator thereof the following relationship
(n − 0.5)/N where n is the order number correspond-
ing to stress or position values at most equal to a given
value while N is the total number of tests.

The 3-point bending test was carried out applying the
load gradually. The loading equipment was activated by
means of a graduated system of weights, and the effect
of time, coming from a some kind of static fatigue, was
studied by recording the fracture time after the placing
of the last loading weight. The weights were placed
onto the loading equipment at intervals of 270 seconds.
The fracture time was recorded for each of the 90 tests.

3. Total probability of fracture
According to the Probabilistic Strength of Materials
[1, 2] the total cumulative probability of fracture of
some isotropic and homogeneous solid subjected to a
uniaxial and variable stress-field is as follows, consid-
ering surface brittleness:

F(σ ) = 1 − exp

{
− 1

S0

∫
S
φ[σ (r )] dS

}
(1)

where S0 is surface unit, S is the surface of the mate-
rial subjected to stress, r is position vector, σ (r ) ≤ σ is
stress-field, σ is maximum stress of fracture, and φ(σ )
is Weibull’s specific-risk-function. Equation 1 can be
rewritten as follows:

ξ (σ ) = ln
1

1 − F(σ )
= 1

S0

∫
S
φ[σ (r )] dS (2)

where ξ (σ ) is Evans function [15]. Function φ(σ ) orig-
inally proposed by Weibull has the following analytical
expression, potential and of two or three parameters:

φ(σ ) =



(
σ − σL

σ0

)m

σL < σ < ∞
0 0 ≤ σ ≤ σL

(3)

where m and σ0 are parameters depending on the man-
ufacturing process of the material whereas σL is the
stress under which there is no fracture.

Now there will be considered a round beam, L long
and of radius r , simply supported and subjected to a

load P applied at the center of the bearing length. Then
the stress-field in keeping with the elemental theory of
beams, is:

0 ≤ σ (x, y, z) = 2xy

Lr
σ ≤ σ = PL

πr3

0 ≤ x ≤ L

2
; 0 ≤ z =

√
r2 − y2 ≤ r ; 0 ≤ y ≤ r

(4)

If Weibull’s specific-risk-function includes two param-
eters, that is to say if σL = 0 in Equation 3, then the
introduction of Equation 4 into Equation 2 yields:

ξ (σ ) = Lr
√

π

2S0(m + 1)

(
σ

σ0

)m 


(
m + 1

2

)




(
m + 2

2

) (5)

where 
 is the Euler gamma function:


(m) =
∫ ∞

0
tm−1e−t dt (6)

4. Local probability of fracture
The probabilistic strength of materials allows to deter-
mine the probability with which some solid may frac-
ture at a certain point thereof. The fundamental equation
of the local probability of fracture is, according to [16]:

dn(r )

n
= φ[σ (r )] dS∫

s φ[σ (r )] dS
(7)

where dn(r )/n is the percentage of fracture initiated at
the point r of surface dS and n is the total number of
fractures.

For the case of some round beam subjected to flexure,
the consideration of Equations 3 with σL = 0 and of
Equation 4 leads to the transformation of Equation 7
into the following one:

n(x)

n
=

∫ x

0

dn(x)

n
= 1∫

s φ[σ (r )] dS

×
∫ x

0
φ[σ (r )] dS =

(
2x

L

)m+1

(8)

where x is the least distance measured between the point
of fracture and one of the supporting points.

Note that, in general, for a something material sub-
jected to flexure it is necessary to determine, moreover,
the location, below neutral axis, where the inside crack
growing until fracture. However, in this particular case,
that it is not necessary because in glasses subjected to
flexure the cracks that give origin to fracture grows in
the free surface of the material.
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5. Dispersion of the parameters
Fisher’s information matrix R is determined using the
following equation, according to [12]:

ri j = −nE

(
∂2 ln f (σ ; θ )

∂θi∂θ j

)

{θ} = {m, σ0} (9)

where E is the expected-value operator, f is
probability-density function, and n is sample size. If
Weibull’s specific-risk function includes two parame-
ters then function f (σ ) can be written, in the case of
flexure and total probability of fracture, as follows:

f (σ ) = K
m

σ0

(
σ

σ0

)m−1

exp

{
−K

(
σ

σ0

)m}
(10)

where K is defined as follows in keeping with
Equation 5:

K = Lr
√

π

2S0(m + 1)




(
m + 1

2

)




(
m + 2

2

) (11)

Hence the elements ri j of Fisher’s matrix are:

r11 = −nE

(
∂2 ln f (σ ; m, σ0)

∂m2

)
= n

(
1

K

∂K

∂m

)2

+ n

m2
(1.82379 − 0.84555 ln K + ln2 K )

r12 = −nE

(
∂2 ln f (σ ; m, σ0)

∂m∂σ0

)

= − n

σ0

(
m

K

∂K

∂m
− ln K + 0.42277

)

r22 = −nE

(
∂2 ln f (σ ; m, σ0)

∂σ 2
0

)
= n

(
m

σ0

)2

(12)

where ∂K
∂m is defined by:

∂K

∂m
= Lr

√
π

2S0(m + 1)




(
m + 1

2

)




(
m + 2

2

)

×







′

(
m + 1

2

)




(
m + 1

2

) −

′

(
m + 2

2

)




(
m + 2

2

)

 − 1

m + 1




(13)

in which 
′ is the derivate of the Euler gamma function.
The matrix of variances and covariances is easily de-

termined by means of the inversion of Fisher’s matrix,
with the due consideration that r11 be positive. Hence
the dispersion of parameter θi is v

1/2
ii if V = R−1. The

expressions of the variances and covariances are deter-
mined considering:

Var(m) = r22

r11r22 − r2
12

Var(σ0) = r11

r11r22 − r2
12

(14)

Co − Var(m, σ0) = r12

r2
12 − r11r22

For local probability of fracture there is only one
parameter, m, in consecuence the Fisher’s matrix have
one element. In accord with Equation 8 the probability
density-function for this case is:

f (x) = d

dx

[
n(x)

n

]
= 2(m + 1)

L

(
2x

L

)m

(15)

Hence, considering Equation 9 the element of Fisher’s
matrix is:

r11 = −nE

(
∂2 ln f (x ; m)

∂m2

)
= n

(m + 1)2
(16)

and, the variance of parameter m for local probability
of fracture is

Var(m) = (m + 1)2

n
(17)

6. Analysis of the results
The experimental data corresponding to the maximum
stresses of fracture permitted to construct the respective
Weibull diagram of ln ξ (σ ) versus lnσ . The considera-
tion of Equation 5 allows to write:

ln ξ (σ ) = m ln σ + ln
Lr

√
π

2S0(m + 1)




(
m + 1

2

)




(
m + 2

2

) (18)

Now, in a Weibull diagram, shown in Fig. 1, the above
Equation 18 is represented by a straight line whose
slope supplies the value of parameter m.

The diagram of the total cumulative probability of
fracture corresponding to n(x)/n versus 2x/L was con-
structed using the experimental datas regarding the least
distance between the point of fracture and one of the
supportint points in the 3-point test of bending. Equa-
tion 8 supplies the following relationship:

ln
n(x)

n
= (m + 1) ln

2x

L
(19)

In a diagram, shown in Fig. 2, the above Equation 19
is represented by a straight line whose slope amounts
to (m + 1) and supplies thus the value of parameter m.

Inasmuch as testing has affected 90 commercial glass
beams of like manufacture, so that the fabrication proce-
dure has been maintained constant for all these beams,
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Figure 1 Weibull diagram of total cumulative probability of fracture.

Figure 2 Diagram of local probability of fracture.

the corresponding parameter of Weibull must be the
same, independently of its determination through the
total probability or through the local probability using
in both instances the 3-point test of bending.

Table I given below shows the results of the 3-point
test of bending. This table supplies Weibull parameters

T ABL E I Weibull parameters and their dispersion in the bending of
90 round glass beams

Weibull parameters

Probability m σ0 (MPa)

Total 7.5 ± 0.6 21 ± 4
Local 7.5 ± 0.9

m and σ0 for the total probability of fracture, which
were determined in a first approximation through a
least-square regression and paremeter m for the local
probability of fracture which was estimated too through
a least-square regression. The dispersions were deter-
mined by means of Fisher’s matrix Equation 14 and
Equation 17 for total probability of fracture and local
probability of fracture, respectively, and were included
in Table I.

It can be readily noticed in above Table I that the
values of parameter m determined for the local proba-
bility and for the total probability are practically equal.
This result is showing the advantages of employing
round test specimens in the 3-point test of bending
because such a procedure affords and independence
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from the problem constituted by the aleatory boundary
conditions and allows thus to completely avoid such a
problem.

If the least distance between the point of fracture
and a supporting point is graphically plotted as a func-
tion of time in a fashion not shown herein, then a
complete aleatoric condition, i.e. randomness, can be
observed. Therefore fracture-time influence does not
play whatever role in the statistical variables studied
herein and concerning the strength and the position of
fractures.

7. Conclusions
It has been possible to get an excellent result in the com-
parison of the values of Weibull parameter m, achieving
a complete agreement between the theory and the ex-
perience gathered, through the determination of value
m = 7.5 in keeping with the total and local probabil-
ities of fracture. The foregoing is the fruit of the use
of round beams for undertaking the 3-point bending
test in a manner that is affording a complete control
over the aleatory boundary conditions. The small value
of dispersion, both in parameter m and in parameter
σ0, for total probability of fracture—namely 0.6 and
4, respectively—and 0.9 for local probability of frac-
ture, is showing that the tests were properly carried out.
As concerns fracture times, they exhibited a complete
randomness, and there was observed no influence at
all of these times on fracture stresses and on the min-
imun distances between fracture points and one of the
supporting points.
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